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Takhtajan-Babujian model 
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Departamento de Fisica, Universidade Federal de SHo Carlos, CP-676, 13560 SHo Carlos, 
SP, Brazil 

Received 21 December 1987 

Abstract. We consider the critical behaviour of the spin-1 Hamiltonian of the Takhtajan- 
Babujian model. The Bethe ansatz equations for this antiferromagnet in a finite chain are 
investigated analytically and numerically. The conformal anomaly and critical exponents 
are obtained by exploiting their relations with the eigenspectrum of the finite system. Our 
results strongly support the conjecture that the Wess-Zumino-Witten non-linear U model 
with topological charge k = 2 is the underlying field theory for this statistical mechanics 
model. 

Since the exact solution of the spin S = Heisenberg model by using the Bethe ansatz 
(Bethe 1931) many efforts have been made in order to obtain other models also soluble 
by this ansatz (see, e.g., Lieb and Wu 1972, Thacker 1981, Baxter 1982, Gaudin 1983, 
Tsvelick and Weigmann 1983). Looking for a generalisation of the Heisenberg model 
to higher spin S Takhtajan (1982) and Babujian (1982, 1983) were able to find a set 
of critical (gapless) quantum-spin antiferromagnetic models in which the Bethe ansatz 
may be formulated. These models for an L-site chain are defined by the Hamiltonian 

where S, (S : ,  S: ,  S : )  are SU(2) operators of arbitrary integer or half-integer spin S 
attached at the site n. The polynomial Q z s ( x ) ,  of degree 2S, is defined by 

2 s  2 s  

/ = O  k = / + l  , = O , J # /  Xi-x, 
Q Z S ( x ) = - J  (i) E (-) 

where xl  = f [ l ( l +  1 )  -2S(S+ l ) ]  and J ( > O )  is the coupling constant. Apart from a 
harmless constant the case S = reduces to the well known Heisenberg Hamiltonian 

J L  
H = -  S;S ,+ ,  

4 n = l  

while the case S = 1 gives us 

which contains a quadratic term in the spin variables. 
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More recently AWeck (1986a, b) by relating the infinite system at finite temperature 
and the finite system at zero temperature calculated the conformal anomaly for these 
spin models from their low-temperature specific heat behaviour. Their conformal 
anomaly (or central charge of their conformal algebra) has the value 

c = 3 S / ( l + S )  (4) 

and coincides with the central charge of the two-dimensional Wess-Zumino- Witten 
model (wzw) with symmetry group G = SU(2) and topological charge k = 2S (Khizhnik 
and Zamolodchikov 1984). This leads to the conjecture (Affleck 1986a, b, c) that the 
wzw is the underlying field theory which describes the critical behaviour of the spin 
models (1). This implies (Khizhnik and Zamolodchikov 1984, Affleck and Haldane 
1987) that these spin models should have operators whose scaling dimensions X, are 

X, = j ( j + 1 ) / ( 1 + S ) j = O , i ,  1 , .  . .  , S. ( 5 )  

In the case of spin $ the dimension XI,* = corresponds to the energy operator as 
well to the polarisation operator (Baxter 1982, Alcaraz et a1 1987a, b) .  In the case of 
spin S = 1 we should have two relevant operators with dimensions = i and XI = 1, 
beyond the identity operator ( X ,  = 0). 

In this letter an independent test of predictions (4) and (5) will be made by 
calculating directly the conformal anomaly as well as the anomalous dimensions 
corresponding to several operators in the case of the spin S = 1 Hamiltonian (3). These 
calculations will be done by exploiting a set of remarkable relations (see Cardy (1987) 
for a recent review) between these quantities and the eigenspectrum of the statistical 
mechanics model. 

The relevant relations, for our purposes, may be stated as follows. To each primary 
operator 4, with anomalous dimension X, and spin S,, in the operator algebra of the 
critical infinite chain there exists a set of states in the quantum Hamiltonian, in a 
periodic chain of L sites, whose energy and momentum are given by 

E , , ,  = E r ’ +  (2T/ L)l(X,  + n + n ’ )  +O( L-1) (6a)  

Pn,..=(2T/L)(S&,+n - n ‘ )  n, n’=O, 1 , 2 , .  . . (6b) 

respectively as L + W. The ground-state energy of the finite chain is Eho’ and 5 is 
introduced in order to ensure that the resulting equations of motion are conformally 
invariant (von Gehlen et a1 1986). For the Hamiltonian ( l ) ,  with arbitrary spin, the 
value 5 = ~ / 2  can be inferred from the known energy-momentum dispersion relations 
(Takhtajan 1982). In addition to the relations (6) the conformal invariance of the 
infinite system also predicts (Blote et a1 1986, AWeck 1986a) that the L-site ground-state 
energy E r ’ ,  at criticality, should behave as 

n, n’=O, 1 , 2 , .  . . 

E p ’ / L =  e x -  T C ~ / ~ L ’ + O ( L - ~ )  L+W. (7) 

Here c is the central charge of the conformal class governing the critical behaviour of 
the infinite system and e, is the ground-state energy per site in the infinite lattice limit 
which for the Hamiltonian (3) has the exact value e, = -1 (Takhtajan 1982, Babudjian 
1982, 1983) where hereafter we will assume J = 1 in (1)-(3). 

Previous finite-size studies of spin-1 systems (Blote 1978, Botet and Jullien 1983, 
Botet et a1 1983, S6lyom and Ziman 1984, Betsuyaku and Tokota 1986, Oitmaa et a1 
1986, Moreo 1987, Blote and Capel 1986, Bonner et a1 1987, Blote and Bonner 1987) 
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are basically restricted in finite-size scaling (Barber 1983) for lattice size up to L = 121. 
However the existence of a Bethe ansatz for the special family of models given in (1) 
will permit us to study these specific models for much bigger lattices. For the particular 
case of spin 1 we will consider lattice sizes up to L = 84; although we can go even 
further ( L -  300) these data will be sufficient for our numerical analysis. 

The general spin-S Hamiltonian, with periodic boundary conditions imposed, 
commutes with the total spin operator 4' = Z, Si. Consequently the associated Hilbert 
space can be decomposed in 2L+ 1 disjoint sectors labelled by the eigenvalues of 3'; 
r =  0, i l ,  i 2 , .  . . . Because of spin-reversal symmetry the sectors r = + I  and r =  - 1  are 
degenerate, and we can thus restrict ourselves only to sectors r 3 0. From the Bethe 
ansatz (BA)  formulation for these models (Takhtajan 1982, Babujian 1982) the 
eigenenergies, for the sector r, will be given in terms of the complex roots 
( A , ,  A 2 ,  . . . , A L - r )  of the ( L  - r )  coupled non-linear BA equations 

The energy and momentum of the eigenstates are 
S L - r  S 

j = 1  Aj+S 
E = - C  - 

2 2  

and 
S L - r  

P =  (2tan-'Aj-.rr) mod 257 
j = 1  

respectively. 
Recently several works have been reported (de Vega and Woynarovich 1985, Hamer 

1985,1986, Woynarovich and Eckle 1987a, b, de Vega and Karowski 1987, Woynarovich 
1987, Hamer et a1 1987) in which the finite-size corrections for the eigenenergies, in 
the large-L limit, can be computated analytically for systems with a Bethe ansatz 
formulation. However, these calculations were done based on methods where the 
assumption of real roots should hold, which is not the case in (8) for S > i. A standard 
way of transforming the system of complex roots to a system of real ones is the string 
hypothesis, which states that as L +  CO the numbers A, cluster in complexes of n-strings. 
Each n-string contains n complex roots of the form 

h;k=Ay+fi(n+1-2k) k = 1,2, . . . , n (10) 
where AY are real numbers corresponding to the centre of the n-string. With the 
assumption (10) we can parametrise an arbitrary configuration given the number of 
strings of size n such that 2, nv, = SL - r. For a given configuration the system (8) 
reduces to the system of equations for A!, j = 1,2, . . . , v, : 

where +n,s and +,,, are combinations of tan-' functions and 0; are integers or 
half-integer depending on the particular eigenenergy (see, for example, Babujian 1983). 

t It is important to mention that the previous attempts to verify the conjectures (4 )  and ( 5 )  (Blote and Capel 
1986, Bonner et a/  1987, Blote and Bonner 1987, see also references therein) produced no convincing 
numerical agreement due to the small system sizes and the presence of logarithmic corrections. 
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The ground state, which occurs in the r = 0 sector, corresponds to a sea of 2s-strings 
( vZS = L/2S), the lowest state in the r = 1 sector to vZS = L/2S - 1, vzs-I = 1, and so on. 

We should stress that the assumption (10) is valid only in the limit L+ CO whenever 
the state contains n-strings ( n  > l), consequently we do not expect, in general, that 
(11) will give us the correct finite-size corrections to the eigenspectrum in order to 
estimate the quantities in (6) and ( 7 ) .  These corrections, within the string hypothesis, 
can be calculated by the analytical method developed by Woynarovich and Eckle 
(1987a). The ground-state energy E",', with the string hypothesis, for the L-site chain 
behaves as 

while the lowest energy in the r sector E:' behaves as 

E ~ ' - E ~ t = n 2 r 2 / 4 S L 2 + 0 ( 1 / L 2 1 n  L )  

L+CO 

L+CO. 

Equations (12) and (7 ) ,  with l =  r / 2 ,  give us a value c =  1 for all the spins in 
contradiction to the expected result (4). From (6a)  the mass-gap amplitudes corre- 
sponding to the r sectors ( r  # 0) are related to the scaling dimensions X ,  of operators 
occurring in the model. These dimensions govern the power-law decay of the several 
correlation functions of the critical model. From (13) and (6) we obtain X ,  = r2/4S 
also in contradiction with the predicted result (5). In the case S = $ equations (12) 
and (13) give us the expected results c = 1 and XIl2 = 4 because, in this case, E:' consist 
of a sea of particles (1-string) and the string hypothesis is exact for finite L. Although 
the string assumption does not give in general the correct term of order 1/ L2, equations 
(12) and (13) tell us that the eigenenergies will have also logarithmic behaviour beyond 
power corrections, like the S = f Heisenberg model (Alcaraz et a1 1987a, b, Woynarovich 
and Eckle 1987a). These corrections will slow down strongly the convergence rate of 
the finite-size estimators. 

In order to obtain the correct energies we have to solve the original BA equations 
(8). For the spin-1 Hamiltonian (3) we solved these equations by using a Newton-type 
method. We first solve the more simple set of real equations (1 1) and use this solution 
together with (10) to produce the initial guess for the complex root system (8). In 
table 1 we show the ground-state energies EO for lattice size up to L = 84. We also 
show the corresponding energies E t  obtained by solving (1 1). From (7),  using 5 = ~ / 2  
and em= -1 the conformal anomaly c can be obtained extrapolating the sequence 

C L E  -(EO+ L)12L/rr2. (14) 

Table 1.  Finite-size sequence for the extrapolation of the conformal anomaly. E o  and Eh' 
are ground-state energy obtained using and not using the string hypothesis, respectively. 

L -Eo/L -E:/L -(E0-L)12L/.rr2 - (Et-L)12L/~r'  

8 1.020085 617 1.013 350454 1.562 956 1.038 861 
20 1.003 122 013 1.002 077 559 1.518 365 1.010 403 
36 1.000 958 385 1.000 638 099 1.510 172 1.005 483 
52 1.000 458 541 1.000 305 374 1.507 532 1.003 968 
68 1.000 267 910 1.000 178 445 1.506 217 1.003 236 
84 1.000 175  476 1.000 116889 1.505 418 1.002 799 
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In table 1 we show this sequence for the true energies E,  and for the energies 
obtained by solving ( 1  1 ) .  Using VBS approximants (Hamer and Barber 1981 ) we obtain 
c = 1 SO0 (4) f 0.0004 in excellent agreement with the prediction (4). Using the sequence 
(14) with Eit we obtain c = 1.000 (2)*0.000 (4) in perfect agreement with (12). From 
(6) the scaling dimensions X ,  corresponding to the mass-gap amplitudes between the 
lowest energy E, in the r sector and the ground state Eo can be obtained in the limit 
L + CO of the sequence 

(15) 

In table 2 we show these estimates, with the corresponding VBS extrapolations, for 
r = 1-5 and lattices up to L = 84. As we have already indicated, the expected logarithmic 
corrections make the series slowly convergent and give us poor estimates. In order to 
cancel at least part of the logarithmic corrections, i.e. those already present in the 
string hypothesis, we consider the sequence 

X, (  L )  = ( E ,  - E,) L2/ T 2 .  

D,( L )  = [ ( E ,  - E,)  - (E:'  - Ei1)]LZ/  T 2  (16) 

which will give us the correction we should add to the results (13) obtained using the 
string hypothesis. In table (3)  we show these estimates for r = 1-5, together with their 
VBS extrapolations. We clearly see, in comparison with table 2, that the convergence 
rate increases and the extrapolations are much better, which indicate that the leading 
logarithmic correction that was present in the sequences of table 2 is no longer present. 
Using the extrapolated results of table 3 together with the exact expression (13) we 

Table 2. Mass-gap amplitudes and extrapolations for sectors r =  1-5; see equation (15). 

~~~ ~~ 

1.672 538 2.407 210 3.644 041 
20 0.337 846 0.803 857 1.886 674 2.960 138 4.662 006 
36 0.339 962 0.829 474 1.958 973 3.155 378 5.002 364 
52 0.341 389 0.841 900 1.991 375 3.239 970 5.144 823 
68 0.342 426 0.849 709 2.011 296 3.289 661 5.227 074 
84 0.343 229 0.855 258 2.025 270 3.323 434 5.282 452 

Extrapo- 
lated 0.3 (5) 0.9 (4) 2.2 ( 5 )  3.7 (7) 6.60 ( 6 )  

8 0.336784 0.740494 

Table 3. Finite-size sequences of the quantities D,(L)  for r = 1-5; see equation (16). 

L D , ( L )  DAL) D , ( L )  D4(L) D , (L)  

8 0.1 18 550 0.014 8478 0.061 6628 0.036 8408 0.045 0017 
20 0.121 419 0.005 3599 0.088 5157 0.018 4639 0.064 9935 
36 0.122 445 0.003 0060 0.101 4681 0.009 9641 0.077 3298 
52 0.122 889 0.002 0877 0.107 3706 0.006 6169 0.087 2656 
68 0.123 146 0.001 8149 0.1107617 0.004 9272 0.093 6852 
84 0.123 317 0.001 5791 0.1129719 0.003 9367 0.098 1576 

Extrapo- 
lated 0.124 (6) 0.000 (3) 0.124 (4) 0.000 (7) 0.124 (5) 
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obtain the following estimates: X ,  = 0.375 (6), X ,  = 1.000 (3), X3 = 2.374 (4), X4 = 
4.000 (7) and X5=6.374 (5). We observe that X, and X2 correspond to relevant 
operators and are in perfect agreement with the predictions (5). 

From table 3 we see that while D, converges to Q for the sectors with r odd, for r 
even there seems to be no indication of a correction ( D ,  = 0) of order 1/ L’. We believe 
the reason for such distinct behaviour is related to the fact that, while for r even the 
lowest state is a sea of 2-string-like particles, for odd values of r we also have single 
particles in addition to these particles. Our results suggest the following dimensions, 
for general r :  

r = 2,4,6, .  . . 
r = 1, 3, 5 , .  . . 

We have also obtained some excited eigenenergies of states containing 3-string-like 
particles in the r sectors. Their corresponding dimensions, however, are the same as 
those occurring in the r +  1 sector given in (17). 

In summary, by solving the Bethe ansatz equations of the spin-1 model formulated 
by Babujian (1982) and Takhtajan (1982) we have calculated the conformal anomaly 
and scaling dimensions corresponding to several operators ( 17). Our results strongly 
support the conjecture that the wzw model, with K = 2, is the underlying field theory 
describing the criticality of this spin model. 

It is our pleasure to acknowledge profitable discussions with J R Drugowich Felicio 
and R Koberle. This work was supported in part by CNPq-Brasil. 
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